
Observations on SOFIA Observation Scheduling:
Search and Inference with Discrete and Continuous Constraints

Jeremy Frank and Michael A. K. Gross∗ and Elif Kürklü†

NASA Ames Research Center
Mail Stop N269-3

Moffett Field CA 94035-1000
{frank,ekurklu}@email.arc.nasa.gov, mgross@mail.arc.nasa.gov

Abstract

In previous work we describe the problem of scheduling
flights for SOFIA, an airborne observatory. Schedul-
ing in this domain requires solving many Initial
Value Problems (IVPs) and Boundary Value Problems
(BVPs) to evaluate constraints on the observatory’s
ground track and telescope elevation limits. These are
costly operations, and become more so when account-
ing for winds and fuel consumption. In this paper we
show how to reduce the number of IVPs and BVPs
needed to schedule SOFIA by restricting the set of
flight plans we sample. Empirical studies show that
the restriction costs us little in terms of the value of
the flight plans we can build. The restriction allowed
us to reformulate part of the search problem as a zero-
finding problem. The result is a simplified planning
model and significant savings in computation time.

Introduction

The Stratospheric Observatory for Infrared Astronomy
(SOFIA) is NASA’s next generation airborne astronom-
ical observatory. The facility consists of a 747-SP mod-
ified to accommodate a 2.5 meter telescope. SOFIA
is expected to fly an average of 140 science flights per
year over it’s 20 year lifetime. The SOFIA telescope is
mounted aft of the wings on the port side of the aircraft
and is articulated through a range of 20 to 60 degrees of
elevation. The telescope has minimal lateral flexibility;
thus, the aircraft must turn constantly to maintain the
telescope’s focus on an object during observations. A
significant problem in future SOFIA operations is that
of scheduling Facility Instrument (FI) flights in sup-
port of the SOFIA General Investigator (GI) program.
GIs are expected to propose small numbers of observa-
tions, and many observations must be grouped together
to make up single flights. Approximately 70 GI flight
per year are expected, with 5-15 observations per flight.
The scope of the flight planning problem for support-
ing GI observations with the anticipated flight rate for
SOFIA makes the manual approach for flight planning
daunting.

Automated flight planning for SOFIA involves select-
ing observations to perform and scheduling these obser-
vations. Verifying that constraints on the observations

∗Universities Space Research Association
†QSS Group, Inc.

are satisfied involves solving both Initial Value prob-
lems (IVPs) and Boundary Value Problems (BVPs) to
find the aircraft’s ground track, determine aircraft fuel
consumption, and check that observations stay within
proscribed elevation limits. In previous work (FK03)
we describe ForwardPlanner, a progression style search
algorithm that uses a combination of lookahead and
heuristics to guide search. This algorithm is very costly
to run, as it solves a large number of IVPs and BVPs
merely to determine whether an unscheduled observa-
tion can be added to the flight plan, let alone decide
whether it is a good idea to do so. A set of well-founded
assumptions allowed us to eliminate a large number of
calls to solve the IVPs and BVPs. While this reformu-
lation actually eliminates feasible flight plans, empirical
results show that the resulting algorithm produces high
quality flight plans at a fraction of the computational
effort.

The rest of the paper is organized as follows. We
first describe the high fidelity SOFIA model. We then
re-examine the ForwardPlanner algorithm and describe
a principal source of the increased computational costs
of flight planning. We then describe a way of migrating
some of the search into the underlying constraint rea-
soning component by means of some well-founded as-
sumptions. This allows us to eliminate a large number
of expensive ground track construction steps without
sacrificing the ability to construct good flight plans. We
perform several experiments to validate the approach.
Finally, we discuss the implications of our reformulation
of the computational search on the planning model.

Improving Model Fidelity
The SFPP (Single Flight Planning Problem) consists
of a number of observation requests, a flight day, and a
takeoff and landing airport. The objective is to find a
flight plan that maximizes the summed priority of the
observations performed while obeying the constraints
governing legal flights. The aircraft activities are take-
off, land, flight-leg and dead-leg. Flight-legs require
tracking an object and obeying visibility constraints,
while dead-legs can be used to reposition the aircraft
to enable flight-legs, and only consume time and fuel.
A distinguished class of dead-legs are used to take off
and return to the landing airport.

In previous work (FK03) we described the equations

of motion of the aircraft using an Earth-centric coordi-
nate system. These constraints are a simplification of
the problem. In particular, the following factors were
ignored:

• The impact of the true fuel consumption model of
the aircraft on the flight time. Previously, we sim-
ply used a maximum flight duration as an analog of
fuel consumption. The fuel consumption is actually
a function of aircraft weight, Mach number, change
in altitude, and outside temperature. Since flying re-
duces aircraft weight, the flight duration constraint
in the old model is replaced by a differential equation
that governs the fuel consumption.

• The impact of the Earth’s shape on the ground track.
The Earth is actually an oblate spheroid whose polar
diameter and equatorial diameter are not the same.
This has a reasonable impact on the actual ground
track, and accounting for this invalidates the differ-
ential equations in the previous model that constrain
the ground track.

• The impact of winds on the ground track. As the
aircraft flies, the wind direction and velocity changes
the ground speed. This invalidates the assumption in
the old model that the ground speed is constant.

In this paper we use a more intuitive Cartesian co-
ordinate system. The Earth is modeled as an oblate
spheroid E, whose surface is defined by the equation

x2

a2
+

y2

a2
+

z2

c2
= 1 (1)

where c < a. We define p as the aircraft’s current
position, and θ be the (Sidereal) time that the aircraft
is at p. Let ~S be the vector from the center of E to p.
We then define ~T as the vector defining the vector to
an astronomical object o, and P as the plane tangent
to E at p. Define î, ĵ, k̂ as the unit vectors in the x, y, z

directions respectively. Define ~N as the vector normal
to P:

~N =
px

a2
î +

py

a2
ĵ +

pz

c2
k̂ (2)

(Note that ~S and ~N are generally not parallel since E
is a spheroid.) Let TP = || ~TP||, N = ||~N||. Define ~TP

as the projection of ~T onto P; this is the object azimuth
at p, and is given by

~TP = ~T−
~T ~̇N
N2

~N (3)

Define ~V as the desired heading of the aircraft. The
observatory must track the object inducing ~T, subject
to the constraint that the angle between ~V and ~TP is
270◦, because the telescope points out the left-hand side
of the aircraft. Let R~N(270◦) be a rotation matrix that
rotates a vector 270◦ around ~N, and v be the airspeed
of the aircraft; then

~V = vR~N(270◦)
~TP

TP
(4)

Define ~H as the elevation vector with respect to P.
We also require the angle h between ~H and ~TP obey the
constraint 20◦ ≤ h ≤ 60◦ throughout an observation.
Most targets are infinitely far from Earth, so we assume
~H is given by:

~H = ~T + ~S (5)

From vector calculus we then get the equation for the
elevation h:

h = cos−1

(
~H ~̇TP

||~H|||| ~TP||

)
(6)

~T is a function of θ; this is because the Earth ro-
tates on its axis. The vector ~T traces a circle of radius
x2+y2 = c2−d

c2 , where d = | δ
90◦ | in 24 hours (see (Mee91)

for an explanation of this). The instantaneous change
in p as the aircraft tracks o is dp

dθ = ~V. Since ~V is a
function of T, it is a function of o,p and θ. Computing
the ground track requires solving an Initial Value Prob-
lem (IVP). Solving for the ground track is necessary to
compute h and check the elevation constraints.

It is worth noting that this formulation also makes it
easy to add the effect of winds by adding the appropri-
ate vectors to ~V, and also correct for aircraft pitch by
rotating about ~V × ~N. Due to the presence of winds,
dead-legs in which the aircraft flies a heading for a fixed
duration also require solving an IVP. Finally, flying to
a particular location on the Earth requires solving a
BVP. This problem arises when determining whether
there is sufficient fuel to return to the landing airport
from a particular location.

We previously used a simplified Euler’s method with
constant step size (Fer81) to verify the elevation limit
constraint and compute the heading changes. While
fast, it is prone to large ground-track errors and thus
not suitable for SOFIA’s requirements. The constraints
are now solved using 5th-order Runge-Kutta (Fer81)
with error-adaptive step sizing. A gridded wind and
temperature model is available to correct the ground
track in the face of winds and provide temperature data
for calculating fuel consumption. In addition, an air-
craft performance model from Boeing is used to com-
pute the exact fuel consumption for each of the 747-SP’s
engines, providing a much better estimate of flight time.

Unfortunately, the costs of solving these new con-
straints lead to a serious degradation in computational
efficiency. Under the new model, the ForwardPlanner
algorithm takes roughly 300 times as long to build a
flight plan than it does using the simpler constraints
and constraint reasoning system.

V

N H

TP

TS

E

P p
h

Figure 1: The Cartesian formulation of the instanta-
neous equations of motion of the aircraft and the eleva-
tion. We have exaggerated the spheroid E.

Explaining the Performance Hit
ForwardPlanner is a sampling-based approach that
works as follows: unscheduled observations are checked
for feasibility, then evaluated heuristically. An observa-
tion o is feasible at time θ and position p if there is a
dead-leg of possibly zero duration that ensures that the
observation is within the elevation limits after flying
the dead-leg, the observation stays within the elevation
limits for the required duration of the observation, and
the aircraft can fly to the landing airport after the ob-
servation is finished. If the observation is not visible at
position p at time θ, ForwardPlanner performs a search
for the shortest dead-leg that satisfies these conditions.
This is due to an efficiency requirement on flight plans;
the cost of jet fuel is deemed one of the largest compo-
nents of the ongoing operations cost of the observatory.
We assume that the best global policy is to minimize
dead-leg time required to set up an observation. The
feasible observations are then evaluated by performing
lookahead to construct a short flight plan, which also
requires feasibility testing. These plans are used to rank

each observation, and the ranks are used to bias a sam-
pling approach to choose the next observation.

Our investigation into the ForwardPlanner algorithm
revealed that we spend a considerable amount of time
deciding which observations are feasible. This search
is done by first changing the latitude of the aircraft to
make the object visible, then performing a brute force
search to reduce the dead-leg duration. If the resulting
dead-leg exceeds a bound D the observation is consid-
ered infeasible. Each flight-leg and dead-leg construc-
tion step requires solving an IVP, while each check to
ensure the aircraft can fly to the landing airport requires
solving a BVP. In the worst case, this requires Forward-
Planner to solve a very large number of IVPs and BVPs.
A typical number is 500, 000 IVPs, evenly split between
flight-legs and dead-legs. This is true even though the
dead-leg duration is limited, as are the heading choices
for the enabling dead-leg. The computational expense
of solving the BVPs and IVPs motivates us to search for
ways to do less work to establish observation feasibility.

The shortest dead-leg making the object visible im-
mediately after the dead-leg may not make the object
visible for long enough. Suppose the aircraft is at high
latitudes (above 60◦ absolute value). It is possible to
fly West towards an object that is setting and make
this object appear to rise. Observing the object will
require flying perpendicular to the object, thus making
it appear to set again. It is easy to construct a case
where the aircraft may need to fly a longer dead-leg to
enable an observation of the right duration. Such an
object would have to be valuable to justify adding it
to the flight plan; however, recent studies indicate that
such Northerly flights are likely to be common, so this
is a case worth bearing in mind. Similarly, the shortest
dead-leg making the object visible for long enough may
not enable the aircraft to fly home after the observation
is completed. However, this only happens if the flight is
almost finished. Thus, failing to establish this condition
may lead to missing only one observation; the likelihood
that this observation is critical to making the flight a
good one is low, and is not as important a consideration
as the previous issue.

Cheaper Feasibility Checks

In this section we describe how to change the solution
methodology to reduce the cost of checking feasibility
without sacrificing performance. First we describe a
modification to the ForwardPlanner that restricts the
set of plans that can be built, and explain why this
leads to an increase in speed with a small impact on
the value of the flight plans found. We then show how
to leverage this change to get an even larger increase in
speed, again with minimal performance impact.

Restricting the Set of Plans
The feasibility check may require a large number of ex-
pensive BVP checks to ensure that the aircraft can re-
turn to the landing airport. In some cases, a short
dead-leg enabling an observation makes it impossible
to return home, while a longer dead-leg both enables

the observation and allows the aircraft to return to the
landing airport. This is not as counter intuitive as it
seems, due to the complexities of the observation track-
ing constraints. However, it may be a waste of time to
check this condition. SOFIA will normally take off and
land again at the same airport, so the aircraft will triv-
ially be in range of the landing airport for at least half
the flight.

We can restrict the feasibility check in the following
way: first, we find the shortest dead leg that enables
the observation for the desired duration. If the aircraft
can return to the landing airport after completing both
this dead-leg and the observation, then the observation
is feasible, otherwise it is not feasible. It might be pos-
sible to find a longer dead-leg that allows the aircraft
to return to the landing airport, thus using this policy
will exclude some flight plans. However, this change
to the feasibility condition will generally affect obser-
vations in the latter half of the flight. We can then
postpone the solution of the BVPs until after deciding
to add an observation to the flight plan. If the aircraft
can’t return to the landing airport after performing the
chosen observation and its shortest enabling dead-leg,
then it is discarded and another observation is chosen to
extend the flight. This will reduce the expected number
of BVPs to solve significantly when most observations
are feasible. We expect this modification to reduce the
value of the flight plans found only when high priority
observations are excluded late in the flight. In practice
we find comparable flight plans after making this mod-
ification; in the interests of brevity, we do not report
these results.

Changing the Division of Labor

Even after reducing the number of BVPs to solve, brute
force search is still required to find the shortest dead-
leg that enables the observation, and the performance
gains achieved by eliminating BVPs are modest. How-
ever, we can take advantage of the new restricted feasi-
bility condition by defining a function whose zeros de-
fine the properties of the shortest dead-leg enabling the
observation. This defines a sub-problem that can be
efficiently solved by using zero-finding algorithms such
as Newton’s Method. Because the resulting formulation
allows us to search the full continuous space of dead-
legs, we avoid discretizing the search space to enable
brute-force search, and may also find shorter dead-legs.

Using the restricted conditions on object feasibility,
the dead-leg construction phase of the feasibility check
requires finding the heading and duration of the short-
est dead-leg that enables the observation for a sufficient
amount of time. A dead-leg may be necessary for one
of two reasons. The first reason is that an observation
is not visible at the current position and time. The sec-
ond reason is that the observation is not visible for long
enough We will treat these cases separately.

Let us consider the feasible region of an observation
o. This region is the set of positions on the Earth from
which the observation is visible, and is the annulus de-
fined by two circles centered at the nadir position of o

whose radii are the coelevation limits of the telescope
(in SOFIA’s case, the radii of these circles are 30◦ and
70◦). Suppose the aircraft is outside the feasible region.
We want the aircraft to be in the feasible region after
completing the dead-leg. Now, the shortest leg would
put the aircraft on the boundary of the feasible region,
as opposed to anywhere strictly inside it. This means
that the object elevation h will equal one of the two
elevation limits after flying the dead-leg. If the aircraft
begins inside the inner circle of the annulus, then we
want the object to be precisely at the the upper tele-
scope elevation limit of 60◦, while if it is outside the
outer circle, we want the object to be at the lower tele-
scope elevation limit of 20◦.

If the object was fixed relative to the ground, we
could simply fly directly towards or away from the ob-
ject, since this maximizes the rate of change of the ob-
ject elevation. However, as we mentioned, the object
appears to move across the Earth as the Earth rotates.
We could fly a dead-leg that tracks the object as it
moves, but that would not minimize the flight distance.
We use the following intuition: we fly a dead-leg that
ends with the aircraft flying either directly towards or
directly away from the object to be observed. Intu-
itively, this is the correct policy when the object is
nearly in view, or near the end of longer dead-legs. Ob-
servatory policy will normally prevent dead-legs longer
than a few tens of minutes, so this intuition will likely
produce very short, if not ”locally optimal” dead-legs.

Suppose flying a dead-leg on heading bi for duration
d results in aircraft heading vector ~Vd at the aircraft’s
new position. We can now compute the angle r between
~Vd and the object azimuth at the new position ~TP:

r = cos−1

(
~Vd

~̇TP

|| ~Vd|||| ~TP||

)
(7)

Thus, we have the following problem: find bi, d such
that F1(bi, d) =< f1(bi, d), f2(bi, d) >=< 0, 0 > where
f1(bi, d) = r i.e. the difference between the object az-
imuth and the final heading of the aircraft after flying
the dead-leg defined by bi, d, and f2(bi, d) = e−h is the
difference between the final object elevation and the
telescope elevation limit e closest to the initial object
elevation.

Now let us consider the case where the object vi-
olates the elevation limits at some point during the
observation, regardless of whether or not it is initially
visible. Using the geometric interpretation of the fea-
sible region again, we see that the flight track exits
the annulus (and possible re-enters it later on). In
this case, we can set up a function very similar to
that we used when the observation was initially out-
side the feasible region. We now want to find bi, d such
that F2(bi, d) =< f1(bi, d), f3(bi, d) >=< 0, 0 >, where
f3(h, d) is the difference between the extreme object el-
evation achieved during the flight-leg and the telescope
elevation limit violated during the observation. The in-
tuition behind this is that the dead-leg we wish to fly
should just barely nudge the observation inside the fea-

sible region. f1 remains the same. Unlike the previous
case, where we only needed to compute quantities like
position and object elevation at fixed times, we now
must find either the minimum or maximum of the el-
evation over the course of the flight-leg. We perform
binary search over the ground track to find the extreme
of the object elevation. Figure 2 shows a situation in
which we would zero F2 while searching for a dead-leg.
Initially, the aircraft could not observe the object with-
out the elevation exceeding the upper elevation limit,
whose boundary is shown. However, it is possible to fly
a 10 minute dead-leg to a new position, from which the
maximum elevation achieved during the flight-leg does
not exceed the elevation limits.

In both cases, we have now reduced the problem of
finding the shortest dead-leg to the problem of finding a
zero of a function, which can be solved efficiently using
a variety of methods as long as F satisfies some simple
conditions.

10:00.00 10:10.00

10:27.00

10:35.00

10:00.00

10:10.00

10:27.00

10:35.00

Figure 2: Flying a short dead-leg to enable an ob-
servation. The feasible region boundary shown is the
upper coelevation limit. In this case we would zero
F2 to search for the dead-leg enabling this observa-
tion. The aircraft’s initial location is shown at 10:00:00.
The dead-leg lasts 10 minutes, after which the flight-
leg begins. At 10:27:00 the object elevation achieves a
maximum; the figure also shows the feasible region at
10:27:00, and shows that the elevation limits are not vi-
olated by the flight-leg. The flight leg ends at 10:35:00.

Properties of the dead-legs We now consider the
zeros of the functions F1 and F2 and the dead-legs that
are defined by them. The behavior of zero-finding algo-

rithms depends on how many zeros there are and how
they are distributed. Also, the resulting dead-legs may
not be feasible given other constraints on how the air-
craft flies that are not present in the definition of the
zero-finding problems.

First of all, we observe that there are a countably
infinite number of zeros of both F1 and F2. This is
because we have imposed no restriction on bi and d.
This does not pose a serious problem; these zeros are
widely separated, requiring that the aircraft fly all the
way around the world multiple times. The dead-leg du-
ration restriction imposed by the ForwardPlanner algo-
rithm will eliminate long dead-legs. However, Newton’s
Method might not find the shortest dead leg, and either
incorrectly conclude that some observation is not feasi-
ble or return a suboptimal dead-leg.

Also, not all zeros correspond to valid dead-legs. For
example, a dead leg whose duration is negative is impos-
sible for the aircraft to fly; similarly, a dead-leg whose
duration exceeds the maximum allowed is forbidden.
Also, short dead-legs may violate the minimum turn
duration of the aircraft. A standard rate turn for a 747
is 180 degrees in 2 minutes. If the heading change and
duration of the dead-leg violate this constraint, then the
minimum dead-leg is impossible to achieve. Under these
circumstances, Newton’s Method would incorrectly re-
port that an observation is infeasible.

Despite these potential drawbacks, we should point
out that this method has two significant advantages
over the brute force approach we used previously. First,
we have imposed no limitations on the heading or du-
rations of the dead-legs. Thus, we might find dead-legs
we were unable to find before using this new method.
Second, since zero-finding algorithms are usually quite
fast, we hope that employing such a method will dra-
matically speed up the feasibility check, and therefore
the flight planning algorithm overall.

Finding dead-legs By Zeroing
In this section we will describe how to find dead-legs by
zeroing F1 and F2.

Newton’s Method and Cramer’s Rule
Newton’s Method is our choice for finding the zeros of
F1 and F2. It is simple to implement and very fast
(GMW81). Newton’s Method requires an initial guess
for the zero; let this be denoted b1, d1 with future iter-
ates denoted bi, di . For functions F of 2 inputs and 2
outputs, the method proceeds as follows:
1. Compute F (bi, di) = 〈f1(bi, di), f2(bi, di)〉 = 〈f1, f2〉
2. Compute the Jacobian (matrix of partial derivatives):

J =
(

∂f1
∂b (bi, di) ∂f1

∂d (bi, di)
∂f2
∂b (bi, di) ∂f2

∂d (bi, di)

)
≡
(

p q
r s

)
3. Compute the determinant of J : |J | = ps − qr. If

this is smaller than error tolerance t then set |J | = t
(preserving the sign).

4. Compute the Cramer’s Rule update: db = f2q−f1s
|J|

and dd = f1p−f2r
|J|

5. Set bi+1 = bi + db and di+1 = di + dd

6. If 〈bi+1, di+1〉 ≈ 〈0, 0〉 or step limit reached, then halt,
otherwise go to step 1.

Computing Derivatives Numerically
Directly calculating the derivatives of the functions F1

and F2 is difficult because of the gridded wind model
that influences the ground track, which in turn influ-
ences the elevation (remember, the elevation is a func-
tion of time and position). Consequently, we use finite
differencing to compute all of our derivatives numeri-
cally (GMW81). Of the available schemes, we chose
forward differencing over centered differencing because
of the smaller number of function evaluations required.
We use two step size parameters s1, s2 in forward dif-
ferencing. Suppose we are computing the derivatives at
step i. Forward differencing for functions F of 2 inputs
and 2 outputs proceeds as follows:

1. Compute F (bi, di) = 〈f1(bi, di), f2(bi, di)〉 = 〈f1, f2〉
2. Compute f1b = f1(bi + s1, di)

3. Compute f1d = f1(bi, di + s2)

4. Compute f2b = f2(bi + s1, di)

5. Compute f2d = f2(bi, di + s2)

6. Compute ∂f1
∂b ≈ f1b−f1

s1

7. Compute ∂f1
∂d ≈ f1d−f1

s2

8. Compute ∂f2
∂b ≈ f2b−f2

s1

9. Compute ∂f2
∂d ≈ f2d−f2

s2

Note that more elaborate forms of numerical deriva-
tive computations are available. One reason for avoid-
ing them is the number of calls to compute F1 or F2,
which in this case requires constructing either flight
legs, dead-legs or both. Since we want to minimize
this cost, for the time being we stick with the simple
forward differencing scheme.

Flying a dead-leg requires solving an IVP. Zeroing
F1 requires solving three IVPs per step of Newton’s
Method, since dead-legs must account for winds, and
the finite differencing method requires evaluating the
results of three different dead-legs. Zeroing F2 requires
solving six IVPs, three dead-legs and three flight-legs,
and one function optimization step to find the eleva-
tion extremes per step of Newton’s Method. The ob-
servation feasibility check requires solving one IVP to
compute the ground track for the flight-leg when zero-
ing F1, and one BVP to fly to the landing airport after
zeroing either F1 or F2.

The Initial Guess
Algorithms like Newton’s Method are highly sensitive
to the closeness of the initial guess to the actual zero
of the function. Newton’s Method has quadratic con-
vergence near a zero, which (roughly) means that the
number of correct digits in the guesses doubles at each
step. The brute-force dead-leg search performed pre-
viously does a blind search over possible headings and

durations, so the number of correct digits in each guess
improves by only a constant factor (at best) each step.
Thus, using this methodology to find dead-legs should
be an obvious performance win. However, we must
make good initial guesses to benefit from rapid con-
vergence.

Guessing the initial heading requires determining
how an object’s elevation is changing, and choosing the
flight direction to make the elevation change correctly.
Guessing the initial dead-leg duration requires estimat-
ing the difference in elevation that the dead-leg must
achieve, and then estimating the rate of change of the
elevation during the dead-leg. In both cases we con-
struct a “test-leg”, that is, we track the object for the
desired duration whether it is with the elevation bounds
or not. We use properties of this test-leg to decide both
whether to zero F1 or F2, and make the initial guess.

Suppose the object always moving into the feasible
region while it is outside the feasible region during the
test-leg. For example, either the object is below the
lower elevation limit and rising or above the elevation
limits and setting. In this case we zero F1. If the target
is initially too high we want it to set faster. In this
case we fly away from it, i.e. we guess b0 = 180◦ −Af .
Similarly, if the object is initially too low, we want it to
rise faster, so we fly towards it, i.e. we guess b0 = Af .

Now suppose the object is moving our of the feasible
region at some point during the test-leg. We might also
determine that this happens after successfully zeroing
F1. In these cases we zero F2. If the object initially
is rising, either it will rise continuously or eventually
set. We want to make it rise slower initially, set faster
later, or both. In any case, we want to fly away from
the object, so we guess b0 = 180◦ − Af . If the object
is initially setting, either it continually sets or sets then
rises; we either want it to set slower, rise faster, or both.
In any case, we want to fly towards the object, so we
guess b0 = Af .

Only at high latitudes is it possible for an object to
move into and then out of the feasible region; under
these circumstances, we zero F2.

Guessing the duration is somewhat more complex.
Calculating the maximum required change in elevation
∆h at the current position and time is simple once we
have calculated the test-leg. However, we have to ac-
count for the rate of change of the elevation both as
a function of time, and the change in position as the
aircraft flies. Define re as the equatorial radius of the
Earth, φp as the latitude component of the aircraft’s
location p, and v as the aircraft’s estimated ground-
speed. We compute the instantaneous vectors of the
aircraft’s ground speed and Earth’s rotation, then use
the law of cosines to determine the aggregate effect on
the object elevation, resulting in the following guess:

vrot =
2.0πre

24.0φp
(8)

d0 =
∆hre√

v2 + v2
rot + 2.0v sin(b0)

(9)

We attempted to improve convergence when zeroing
F2 by first using Euler’s Method with constant step size
to construct the flight-legs. Once a zero of F2 was found
this way, we then used this as an initial guess and re-ran
Newton’s Method using Runge-Kutta to construct the
flight legs. This did not improve convergence and was
more expensive, and so we did not consider it further.

Matters of Convergence
Newton’s Method depends on the function being zeroed
to obey some properties to guarantee convergence. Our
functions do not obey these properties all of the time,
and so Newton’s Method occasionally fails to converge.

Newton’s Method is ”non-local”, in the sense that it
can generate any point in <2 during any step. Thus,
if F is not defined on every element of <2, Newton’s
Method may fail to converge to a solution even if one
exists. F1 and F2 are not well defined for sufficiently
short or long dead-leg durations. The problem with
long durations is due to the built-in nature of the fuel
model. Essentially, if a Newton step requires the air-
craft to fly long enough that it would run out of fuel, we
can’t evaluate the ground track of the flight-leg. The
problem with short durations has been explained above.

These factors mean that convergence of Newton’s
method may be interrupted if any intermediate step
violates one of these conditions. This is a problem be-
cause it is conceivable that the zero found by Newton’s
method can correspond to a legitimate supporting dead-
leg even if an iteration of Newton’s method corresponds
to a senseless dead-leg. If the function or the deriva-
tives can’t be evaluated during Newton’s Method, our
only option is to truncate the feasibility check and re-
port that the observation is not feasible. Additionally,
we could find Newton’s Method failing to converge or
converging after a large number of steps; we thus use a
cutoff value to terminate search.

Empirical Results
In this section we describe experiments designed to test
the value of using Newton’s Method to speed up the
feasibility check for ForwardPlanner.

Sample Problems
We used the Single Day problem instances from(FK03)
to determine the utility of our new techniques. Figure
3 lists some salient characteristics of the Single Day
Instances. We tabulate the number of observations, the
archived flight duration, and the airport.

We first report on the change in the number of IVPs
we must solve for problems 1, 2, 3, 5, 6, 43 and 44. This
covers flights from each of the airport sets. We gen-
erated 20 flight plans for each of these problems us-
ing ForwardPlanner and the restricted feasibility con-
ditions described previously. We compared the brute-
force dead-leg search approach to the use of Newton’s
Method for establishing feasibility. We fixed all other
parameters of ForwardPlanner. We used a lookahead
depth of 5, and each of the 4 heuristic features (prior-
ity, efficiency, distance to landing airport, and turning

Problem Flight-legs Dead-legs Efficiency CPU
1-B 366,416 365,108 0.788261 2,935.84
1-N 3,824.5 5,221.55 0.87923 60.3515
2-B 326,840 324,890 0.908678 2,585.04
2-N 5,854.4 5,577.75 0.862177 90.2115
3-B 326,396 323,615 0.930612 2,506.54
3-N 5,078.35 4,337.6 0.923638 69.3355
5-B 66,391.1 64,877.1 0.898895 590.346
5-N 2972.45 1737.6 0.8969.33 48.0125
6-B 222,304 223,116 0.863278 1781.72
6-N 4242.5 6158.9 0.858684 92.2705
43-B 226,353 223,023 0.910907 1787.43
43-N 6590.75 6563.6 0.812689 96.579
44-B 143462 141464 0.814273 1124.84
44-N 9316.85 9143.75 0.857633 159.142

Figure 4: Comparison of Newton’s Method and Brute
Force method of establishing observation feasibility on
a small set of sample problems.

time) were weighted equally. ForwardPlanner sampled
according to the heuristic 70% of the time, and ran-
domly chose the next observation the rest of the time.
The maximum dead-leg duration was set to 4 hours.
For the brute-force search, we used a dead-leg duration
increment of 1 minute and a heading increment of 7.5◦.
For Newton’s Method we used a step cutoff of 150 and
error tolerance t = 10−6. The step parameters used in
forward differencing were: s1 = 0.01◦ and s2 = 60 sec-
onds. Experiments were run on a Sun Workstation with
dual 600 MHz CPUs and 2048 Mb memory. The air-
craft takeoff weight was fixed at 210, 000 pounds of fuel
for all flights. The same temperature and winds were
used for all flights and the altitude was fixed at 35, 000
feet. These results are shown in Figure 4. Each leg-
count cell contains the mean of the leg counts. The best
plans found always contained all of the observations but
the efficiency varied (time spent collecting data vs flight
time) so we report that as well. Finally, we report the
average CPU seconds to generate each plan.

The results indicate Newton’s Method dramatically
reduces the number of IVPs to solve, and the computa-
tion time drops significantly along with it. The largest
speedup is a factor of 48.9, while the smallest speedup
is a factor of 7. While the resulting flight plans do not
suffer in terms of the number of observations schedules,
the story for the flight efficiency is different. Newton’s
Method found more efficient flight plans for problems
1,6 and 43, while the brute force method found more
efficient flight plans for problems 2 and 44; for the oth-
ers, the efficiency difference is negligible. Note that the
performance gap can be narrowed significantly by in-
creasing the duration increment used in the brute-force
search, and by decreasing the maximum dead-leg dura-
tion, but this restricts the set of flight plans that can
be generated.

We ran ForwardPlanner on all 47 problems in the test
suite using Newton’s Method. Again, we generated 20
flight plans for each problem. In only 6 cases were we
unable to find a flight plan with all of the observations
scheduled; in these 6 cases, only 1 observation was not
scheduled. In no case did the generation of a single
flight plan take more than 4 minutes, and frequently
the time was 1-2 minutes.

We ran ForwardPlanner on selected problem in-
stances in the test suite to analyze convergence of New-

Index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Airport H H H H MH
Obs 9 9 10 10 7 8 8 6 10 8 8 6 11 10 8 9 10 8 8 8 9 9 6 8

Index 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
Airport M M M M M M M M M M M M M M M M M M M N N N N N

Obs 7 4 7 6 7 9 8 11 10 8 7 7 7 3 9 8 8 8 4 10 8 8 8 8

Figure 3: Characteristics of Single Day Instances.

ton’s Method. This time we generated 5 flight plans
for each problem. We used Newton’s Method to try
and establish feasibility of the observations. We record
the outcomes: Newton’s Method suceeded (O), failed
to converge before the step limit was reached (C) or
failed to zero F1 and subsequently trying to zero F2

(F), step failure because of a dead leg duration that
was too short (including negative duration) (S) or too
long (L). Finally, in the cases where Newton’s Method
failed, we used brute-force search to try and establish
feasibility, and record the number of times when brute-
force succeeded in enabling an observation when New-
ton’s Method could not. We present this data in Figure
5.

We see all manner of failures of Newton’s Method.
The data indicate that dead-leg failure occurs roughly
10% of the time over these problems. The worst case
in the samples we collected was for Problem 1, where
roughly 12% of calls to Newton’s Method to construct a
dead-leg resulted in failure. Brute Force was sometimes
able to construct a dead-leg when Newton’s Method
failed, with the worst case being arount 11% for Prob-
lems 5 and 6; however, this would increase the success
percentage only a small amount.

Conclusions and Future Work

The work in this paper was motivated by an exami-
nation of the time spent by the ForwardPlanner algo-
rithm in establishing observation feasibility. We have
described a modification of the observation feasibility
condition to reduce the number of IVPs and BVPs to
solve. We show how this allows us to define functions
whose zeros correspond to the properties of enabling
dead-legs, and describe how these functions are zeroed.
Empirical results indicate that ForwardPlanner is sig-
nificantly faster on sample problems, and finds plans of
comparable quality.

We can also relax the definition of feasibility and drop
the check on the return to the landing airport alto-
gether. The consequence of doing this is that a flight
plan may violate the fuel constraint and either need to
be repaired or rejected completely. This may be justi-
fied because throughout most of the planning process
this condition is trivially satisfied. Relaxing the fea-

Problem O F L E S Brute
1 21,784 0 1,527 6 1,686 32
2 30,487 48 1,853 22 738 53
3 20239 9 529 0 2,215 62
5 5,266 2 456 1 103 66
6 30,148 85 244 10 950 144

Figure 5: Analsysis of Newton’s Method convergence
for problems.

sibility check by only ensuring that the observation is
visible immediately after a dead-leg is a more danger-
ous proposition, because the frequency of high latitude
observing almost ensures rejection sampling or repair
will be needed.

We can define an f4 which accounts for the differ-
ence between the amount of fuel remaining to get the
aircraft to the landing airport and the amount of fuel
consumed by the leg home. Doing so would allow us
to use the more restrictive definition of feasibility while
paying only minimal overhead in the number of BVPs
and IVPs that we must solve. However, no method
of doing so we have yet discovered avoids the pitfalls
described previously. Letting f4 = 0 if the landing air-
port is reachable creates many situations where the first
derivative of f4 is zero, which is bad. Forcing f4 = 0
only if exactly enough fuel is left to get to the landing
airport is equally bad.

We intuitively define criteria to minimize the dead-leg
duration (e.g. dead-leg ends with us flying towards the
object). We have not proved this leads to the short-
est dead-leg, even on spherical Earth with no winds.
Since neither of these assumptions hold, other criteria
might be better. Furthermore, the condition on finding
the shortest dead-leg that makes an observation feasi-
ble is ”locally optimal” in the sense that it is the best
action to support one observation. Currently, we rely
on repeated sampling to find good plans, but we know
we only sample some of the possible plans, and may
miss the best possible plan. We have considered post-
processing the resulting flight plans, either using local
search or by defining suitable functions to optimize, in
an attempt to find better flight plans.

Acknowledgments
We would like to thank Karen Gundy-Burlet for her
comments and insights. This work was funded by the
SOFIA Projects Office and by the NASA Intelligent
Systems Program.

References
J. Ferziger. Numerical Methods for Engineering Ap-
plications. John Wiley and Sons, 1981.
J. Frank and E. Kürklü. Sofia’s choice: Scheduling ob-
servations for an airborne observatory. Proceedings of
the 13th International Conference on Automated Plan-
ning and Scheduling, 2003.
P. Gill, W. Murray, and M. Wright. Practical Opti-
mization. Academic Press, 1981.
J. Meeus. Astronomical Algorithms. Willmann-Bell,
Inc., 1991.

